Numerical inverse Lévy measure method for infinite shot noise series representation
نویسندگان
چکیده
Infinitely divisible random vectors without Gaussian component admit representations with shot noise series. We analyze four known methods of deriving kernels of the series and reveal the superiority of the inverse Lévy measure method over the other three methods for simulation use. We propose a numerical approach to the inverse Lévy measure method, which in most cases, provides no explicit kernel. We also propose to apply the quasi-Monte Carlo procedure to the inverse Lévy measure method to enhance the numerical efficiency. It is known that the efficiency of the quasi-Monte Carlo could be enhanced by sensible alignment of low discrepancy sequence. In this paper we apply this idea to exponential interarrival times in the shot noise series representation. The proposed method paves the way for simulation use of shot noise series representation for any infinite Lévy measure and enables one to simulate entire approximate trajectory of stochastic differential equations with jumps based on infinite shot noise series representation. Although implementation of the proposed method requires a small amount of initial work, it is applicable to general Lévy measures and has the potential to yield substantial improvements in simulation time and estimator efficiency. Numerical results are provided to support our theoretical analysis and confirm the effectiveness of the proposed method for practical use.
منابع مشابه
Infinite Variation Tempered Stable Ornstein-Uhlenbeck Processes with Discrete Observations
We investigate transition law between consecutive observations of Ornstein-Uhlenbeck processes of infinite variation with tempered stable stationary distribution. Thanks to the Markov autoregressive structure, the transition law can be written in the exact sense as a convolution of three random components; a compound Poisson distribution and two independent tempered stable distributions, one wi...
متن کاملGaussian approximation of multivariate Lévy processes with applications to simulation of tempered stable processes
The problem of simulation of multivariate Lévy processes is investigated. A method based on generalized shot noise series representations of Lévy processes combined with Gaussian approximation of the remainder is established in full generality. This method is applied to multivariate stable and tempered stable processes and formulas for their approximate simulation are obtained. Key-words: Lévy ...
متن کاملGaussian approximation of multivariate Lévy processes with applications to simulation of tempered and operator stable processes
Problem of simulation of multivariate Lévy processes is investigated. The method based on shot noise series expansions of such processes combined with Gaussian approximation of the remainder is established in full generality. Formulas that can be used for simulation of tempered stable, operator stable and other multivariate processes are obtained. Key-words: Lévy processes, Gaussian approximati...
متن کاملRegularity and convergence in variation for the laws of shot noise series and of related processes
We study the regularity of random series representing shoit noise series or Poisson integrals. We give conditions for the absolute continuity of their law with respect to Lebesgue measure and for their continuity for total variation norm. We deal also with the solution of drifted EDS driven by a Lévy process. We show the regularity of the law of the solution with respect to the drift term.
متن کاملAn optimization approach to weak approximation of Lévy-driven stochastic differential equations
We propose an optimization approach to weak approximation of Lévydriven stochastic differential equations. We employ a mathematical programming framework to obtain numerically upper and lower bound estimates of the target expectation, where the optimization procedure ends up with a polynomial programming problem. An advantage of our approach is that all we need is a closed form of the Lévy meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 253 شماره
صفحات -
تاریخ انتشار 2013